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Comments on “A Rigorous Technique for Measuring
the Scattering Matrix of a Multiport Device with a
Two-Port Network Analyzer”

E. VAN LIL, MEMBER, IEEE
In the above paper,' Tippet and Speciale gave expressions for
the correction to be made on the S matrix to account for the

mismatches on the ports not connected to the network analyzer.
The basic transformation was given by

s'=((1-8)"'(1+8)-(1+T)(1-1) ")
(1= U+)+(+DUI-1) ) O

(notations as in the above paper! and [1]) from which the authors
derived

S'=(I-8)"(S-T)(I-ST) N(1-5).
By using the relation

(I-A) '+ A)=T+4)(T-4)""

)

(3)

that can be easily proven by multiplying each side both right and
left with (I — A4), we can rewrite (1) as

s =((1+8)(1-8)"'=(I-T)"/(1+T))

((I+8)(I=8)+(1-T)'(1+T)) . (4

By following the same procedure as used in the derivation of (2)
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from (1), we obtain
S'=(I-T) {((I-T)Y(I+S)-(I+T)(I-8)(I-5)""
(I=S)((I-TYI+S8)+(I+T)(I-8)) (I-T)
§'=(I-T) ' (§-T)YI-TS) '(I-T) (5)

proving the identity of (5) and (2) as was expected by Tippet and
Speciale.
The simplification of Dropkin [1] applied by Tippet and
Speciale to (5) gave
§’=(I+T)S(I-TS) (I-T)-T (6)
but does not mean a significant improvement in computational
efficiency, because I —-T', T', I+ T, and:(J —T)~! are diagonal
matrices. So, (6) is only a little bit more efficient than (5) because
it does not involve a division by I —I" but rather a multiplication
by I + I'. Furthermore, if a whole series of unknown N ports has
to be measured, the reflection coefficients in the diagonal matrix
T are known, so that only the computation of S(1~TS) ! has
to be carried out, followed by a multiplication of column i by
1-~T,, row j by 1+1T, and a subtraction of T}, from diagonal

i

element k. The formula by Dropkin [1], namely

§'=8—(I+S)T(I-8ST) (I-S5) (7

even if it does contain a significant improvement over (2), it still
is much less efficient than (6). Indeed, only the operation (I + S)T'
or T'(I — ST)~! can make use of the diagonal form of T. So, (6)
gains a whole matrix muitiplication and most of a matrix subtrac-
tion in computational effort over (7).

In the general case of an N-port measured with an M-port
network analyzer, it is easy to show that (6) needs to be applied
at most N!/(MWN — M)!) times for a M X M matrix and once
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to renormalize the N X N network to the 50-£ system. This
implies that each S, with i+ j is measured (N —2)!I/((M —
DN — M)!) times (only once for the classical two-port network
analyzer (NA)(M =2)), and each S, (N-1)!/((M-1DIN—
M) times (or (N —1) for the two-port NA). For the classical
case of the two-port NA, the discussion about efficiency seems
futile because one or two inversions of a 2X2 matrix will not
make a large difference in computation time. However, for the
renormalization to the 50-§ system, the matrix size is N X N.
The proof of (8) and (9) in the reply from the authors' is

carried out in the same way as the simplified formulas (4) and (6) .

are derived from (1) and (3), but those formulas are only useful
for simulation purposes.

Reply? by J. C. Tippet and R. A. Speciale’

The authors of the original paper* agree with Van Lil’s proof
of equivalence and with his analysis of the relative computational
efficiencies of the four known forms of the generalized scattering
matrix renormalization transform. Among these four forms, given
by Van Lil as expressions (2), (5), (6), and (7), the first three were
found by Speciale and the fourth by Dropkin.

For the record, Dropkin must be credited with providing the
inspiration that stimulated the derivation of (6) from (5) and for
delivering, already in December 1982, a direct proof of equiv-
alence of (6) to (7). We are reporting this proof in fuli at the end
of this reply, as it is, to our knowledge, still unpublished. The
proof of equivalence of (2) to (5) delivered by Van Lil is,
however, original, and he must be credited for that.

We are, however, sorry to have to disagree with Van Lil’s
conclusions relating to the minimum number of partial scattering
measurements required to fully characterize an N-port network
on an M-port network analyzer. Our disagreement is motivated
by the following counter-example: Only three partial measure-
ments are required to fully characterize a 6-port network on a
4-port network analyzer. One possible strategy is to use the
port-combinations (1, 2, 3, 4), (1, 2, 5, 6), and (3, 4, 5, 6) in which
case three 4 X 4 preliminary renormalizations are required prior to
the final 6 X 6 renormalization. Also, each S|, is measured twice
while all §,, are measured once except for the Sy;, Sy, Ss, Siss
Ss¢» and Sgs entries which are measured twice. This example
supports the conjecture, stated in a footnote of our paper® that
N(@2N— M)/M? is the minimum number of required partial
measurements, not N!/(MY(N — M) as stated by Van Lil.

The above conjecture only applies to a situation where M is
even and N is a multiple of M /2. It would be interesting to find
a proof of this conjecture and possibly an expression applicable
to arbitrary N and M values. Another interesting aspect of this
problem is to find a formal method for selecting which sets of
port-combinations attain the minimum number of partial mea-
surements. Indeed, even in the above counter-example, there are
various alternate sets that attain full characterization of a 6-port
network in the minimum number of three partial measurements.

Finally, we would like to observe that the application of the
generalized renormalization transform to the measurement prob-
lem described in [1] is not the only one. Another interesting
application is the prediction of the true scattering response of a
multiport network in its intended system environment, where the
impedances seen by the various ports are, in general, far from the
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nominal impedance used in basic design and testing. In fact, we
envisage some kind of “reverse-design” procedure where multi-
port system components would be designed to meet given scatter-
ing response specifications in a specified, non-nominal, external
port-impedance environment, rather than in a nominal-imped-
ance environment. System components would thus be designed to
fit very specific “miches” and would be tested against substan-
tially different reference scattering responses, normalized to
nominal external port-impedances at all ports. Such reference
responses would obviously be specified through renormalization
of the required response from the trug-environment impedances
to the nominal impedances.

The direct proof of equivalence of (6) to (7) delivered by
Dropkin in December 1982 was formulated as follows:

S{=8—(I+S)T(I-ST) '(I-5)
is the same as the alternate form
S;=(I+T)S(I-TS) "(I-T)-T.
Note first that S(/ —TS) !=(I—ST) 'S and that if we set
A=(I—ST) !, then (ST) commutes with 4
S;{—8;=85—(I+8)TA(I-8)—(I+T)AS(I-T)+T
=S+T—TA4 — STA +TAS + STAS — AS
n @ 6 @ O
+ AST — TAS + TAST
© 0 O
3+7=0
1+8=—-TA+TAST=—-TA(I-ST)=-T
4+5=STAS— AS=(ST—-1)AS=-S§
2+6=— STA + AST = 0 since 4 commutes with ST
S{—S5=0
S/=S5;.
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Corrections to “High-Temperature Microwave
Characterization of Dielectric Rods”

JOSE C. ARANETA, MORRIS E. BRODWIN, aAND GREGORY
A. KRIEGSMANN

In the above paper,' the fourth and fifth sentences in the third
paragraph from the bottom of the right-half of p. 1332, should
read:

“The bisection method is used twice; once to find the roots
of G{B), and secondly to find the roots of F(B). In
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