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Letters

Comments on “A Rigorous Technique for Measuring

the Scattering Matrix of a Multiport Device with a

Two-Port Network Analyzer”

E. VAN LIL, MEMBER, lEEE

In the above paper,* Tippet and Speciale gave expressions for

the correction to be made on the S matrix to account for the

mismatches on the ports not connected to the network analyzer.

The basic transformation was given by

s’=((~- sJ-’(~+ s)-(~+r)(~-r)-l)

.((~-s)-’(~+s)+ (~+r)(~-r)-’)-’ (I)

(notations as in the above paperl and [1]) from which the authors

derived

s’=(~–s)-’(s –r)(z–srJ-l(~– s). (2)

By using the relation

(l- A)-l(I+A) =( I+ A)(I-A)-l (3)

that can be easily proven by multiplying each side both right and

left with (1 – A), we can rewrite (1) as

s’=((~+ s)(r-s)-l-(z -r)-l(~+ r))

.((r+s)(~-s)-l+ (~-r) -’(~+ r))-l. (4)

By following the same procedure as used in the derivation of (2)
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from (l), we obtain

s’=(~–r)-l((r– r)(~+s)–(z +r)(~–s))(~–s)-l

.(~-s)((~- r)(z+s)+(~+ r)(~-s))-’(~-r)

or

s’=(~-r)-’(s -r)({-rs)-’(r)r) (5)

proving the identity of (5) and (2) as was expected by Tippet and

Speciale.

The simplification of Dropkin [1] applied by Tippet and

Speciale to (5) gave

s’=(I+r)s(~ –rs)-l(~–r)–r (6)

but does not mean a significant improvement in computational

efficiency, because 1 – r, I’, 1 + I’, and (1 – r)– 1 are diagona3

matrices. So, (6) is only a little bit more efficient than (5) because

it does not involve a division by 1 — 17 but rather a multiplication

by 1 + I’. Furthermore, if a whole series of unknown N ports has

to be measured, the reflection coefficients in the diagonal matrix

r are known, so that only the computation of S(1 – 17S)- 1 has

to be carried out, followed by a multiplication of column i by

1 – 17,, row j “by 1 + ~ and a subtraction of r~ from diagonal

element k. The formula by Dropkin [1], namely

s’=s–(~+sJr(~–sr)-l(r–s) (7)

even if it does contain a significant improvement over (2), it still

is much less efficient than (6). Indeed, only the operation ( 1 + S) 17

or r( 1 – Sr) -1 can make use of the diagonal form of r. So, (6)

gains a whole matrix multiplication and most of a matrix subtrac-

tion in computational effort over (7).

In the general case of an iv-port measured with an M-port

network analyzer, it is easy to show that (6) needs to be applied

at most N!/(M!(N – M)!) times for a M X M matrix and once
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to renormalize the N x N network to the 50-0 system. This

implies that each S,, with i + j is measured (N – 2) !/ (( M –

2)!( N – M)!) times (only once for the classical two-port network

analyzer (NA)(M= 2)), and each S,, (N –l)!/((M–l)!(N–
M)!) times (or (N – 1) for the two-port NA). For the classical

case of the two-port NA, the discussion about efficiency seems

futile because one or two inversions of a 2X 2 matrix will not

make a large difference in computation time. However, for the

renormalization to the 50-0 system, the matrix size is N X N.

The proof of (8) and (9) in the reply from the authors’ is

carried out in the same way as the simplified formulas (4) and (6)

are derived from (1) and (3), but those formulas are only useful

for simulation purposes.

Reply 2 by J. C. Tippet and R. A. Speciale3

The authors of the onginaf paperl agree with Van Lil’s proof

of equivalence and with his analysis of the relative computational

efficiencies of the four known forms of the generalized scattering

matrix renormalization transform. Among these four forms, given

by Van Lil as expressions (2), (5), (6), and (7), the first three were

found by Speciale and the fourth by Dropkin.

For the record, Dropkin must be credited with providing the

inspiration that stimulated the derivation of (6) from (5) and for

delivering, already in December 1982, a direct proof of equiv-

alence of (6) to (7). We are reporting this proof in full at the end

of this reply, as it is, to our knowledge, still unpublished. The

proof of equivalence of (2) to (5) delivered by Van Lil is,

however, original, and he must be credited for that.

We are, however, sorry to have to disagree with Van Lil’s

conclusions relating to the minimum number of partial scattering

measurements required to fully characterize an N-port network

on an M-port network analyzer. Our disagreement is motivated

by the following counter-example: Only three partial measure-

ments are required to fully charactetie a 6-port network on a

4-port network analyzer. One possible strategy is to use the

port-combinations (1, 2,3, 4), (1, 2, 5, 6), and (3,4,5, 6) in which

case three 4 x 4 preliminary renormalizations are required prior to

the final 6 x 6 renormalization. Also, each S,l is measured twice

while all S,, are measured once except for the SI ~, S21, S34, S43,

S5G, ad SG5 entries which are measured twice. This example
supports the conjecture, stated in a footnote of our paperl that

N(2N – M)/&fz is the minimum number of required partial

measurements, not N !/(&f !( N – M)!) as stated by Van Lil.

The above conjecture only applies to a situation where M is

even and N is a multiple of M/2. It would be interesting to find

a proof of this conjecture and possibly an expression applicable

to arbitrary N and M values. Another interesting aspect of this

problem is to find a formal method for selecting which sets of

port-combinations attain the minimum number of partiaf mea-

surements. Indeed, even in the above counter-example, there are

various alternate sets that attain full characterization of a 6-port

network in the minimum number of three partial measurements.

Finally, we would like to observe that the application of the

generalized renormalization transform to the measurement prob-

lem described in [1] is not the only one. Another interesting

application is the prediction of the true scattering response of a

multiport network in its intended system environment, where the

impedances seen by the various ports are, in general, far from the
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noqinrd impedance used in basic design arid testing. In fact, we

envisage some kind of “reverse-design” procedure where muM-

port system components would be designed to meet given scatter-

ing response specifications in a speeifi@ non-nomkd, external

port-impedance environmen~ rather than in a nominal-imped-

ance environment. System components would thus be designed to

fit very specific “niches” and would be tested against substan-

tially different reference scattering respons~ normalized to

nominal external port-impedances at all ports. Such reference

responses would obviously be specified through renormalization

of the required response from the true-environment impedances

to the nominal impedances.

The direct proof of equivalence of (6) to (7) delivered by

Dropkin in December 1982 was formulated as follows:

is the same as the alternate form

Note first that S(1 – rS)- * = (1 – Sr)-*S and that if we set

A = (1– sr)-’, then (sr) commutes with A

s;–s; =s–(~+s)rA(~– s}–(~+r)~s(~–r)-tr

=s+r–rA –srA+r/ts+srfi-fts
(1) (2) (3) (4) (5)

+ ,or – r,m + rmr
(6) (7) (8)

3+7=0

1+8=–rA +rAsr=–rA(~–sr)=–r

4+5= SrAS– AS=(Sr– I) AS=– S

2+6 = – SrA +ASr= O since A commutes with S17

S{–s; =o

$’= s;.
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Corrections to “High-Temperature Microwave

Characterization of Dielectric Rods”

JOSE C. ARANETA, MORRIS E. BROJIWIN, AND GREGORY

A. KRIEGSMANN

In the above paper? the fourth and fifth sentences in the third

paragraph from the bottom of the right-half of p. 1332, should

read:

“The bisection method is used twice; once to find the roots

of G ( ~), and secondly to find the roots of F(~). ht
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